Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH

نویسندگان

  • Qinglong Wu
  • Hein Min Tun
  • Yee-Song Law
  • Ehsan Khafipour
  • Nagendra P. Shah
چکیده

Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5-6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk

Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-cu...

متن کامل

P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress

Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...

متن کامل

Sodium L-Glutamate-Induced Physiological Changes in Lactobacillus Brevis NCL912 During GABA Production Under Acidic Conditions

Corresponding Author: Jian Mao, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China Tel: +86-510-8532-9062, Fax: +86-510-8591-2155, E-mail: [email protected] Abstract: Previous studies showed that γ-aminobutyric acid (GABA) can protect some GABA-producing bacteria against acid stress through glutamate decarboxylat...

متن کامل

میزان اتوآنتی‌بادی ضد گلوتامیک اسید در بیماران دیابتی نوع دو و وابستگان درجه اول آنها

Glutamic Acid Decarboxylase(GAD) catalyses the conversion of glutamic acid to Gama amino Butyric Acid(GABA) which is one of the major inhibitory neurotransmitters in central nervous system. GAD has two isoforms with molecular weights of 65 Kda(GAD 65) and 67 Kda (GAD 67). GAD 65 gene is located on chromosome 10 and expressed in β-cells of pancrease. The presence of high concentrations o...

متن کامل

Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate.

In this study, the glutamate decarboxylase (GAD) gene from Lactobacillus brevis IFO12005 (Biosci. Biotechnol. Biochem., 61, 1168-1171 (1997)), was cloned and expressed. The deduced amino acid sequence showed 99.6% and 53.1% identity with GAD of L. brevis ATCC367 and L. lactis respectively. The His-tagged recombinant GAD showed an optimum pH of 4.5-5.0, and 54 kDa on SDS-PAGE. The GAD activity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017